博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
pig简单的代码实例:报表统计行业中的点击和曝光量
阅读量:5301 次
发布时间:2019-06-14

本文共 7016 字,大约阅读时间需要 23 分钟。

注意:pig中用run或者exec 运行脚本。除了cd和ls,其他命令不用。在本代码中用rm和mv命令做例子,容易出错。

另外,pig只有在store或dump时候才会真正加载数据,否则,只是加载代码,不具体操作数据。所以在rm操作时必须注意该文件是否已经生成。如果rm的文件为生成,可以第三文件,进行mv改名操作

SET job.name 'test_age_reporth_istorical';-- 定义任务名字,在http://172.XX.XX.XX:50030/jobtracker.jsp中查看任务状态,失败成功。

SET job.priority HIGH;--优先级

--注册jar包,用于读取sequence file和输出分析结果文件
REGISTER piggybank.jar;
DEFINE SequenceFileLoader org.apache.pig.piggybank.storage.SequenceFileLoader(); --读取二进制文件,函数名定义
%default Cleaned_Log /user/C/data/XXX/cleaned/$date/*/part* --$date是外部传入参数
%default AD_Data /user/XXX/data/xxx/metadata/ad/part*
%default Campaign_Data /user/xxx/data/xxx/metadata/campaign/part*
%default Social_Data /user/xxx/data/report/socialdata/part*
--所有的输出文件路径:
%default Industry_Path $file_path/report/historical/age/$year/industry
%default Industry_SUM $file_path/report/historical/age/$year/industry_sum
%default Industry_TMP $file_path/report/historical/age/$year/industry_tmp
%default Industry_Brand_Path $file_path/report/historical/age/$year/industry_brand
%default Industry_Brand_SUM $file_path/report/historical/age/$year/industry_brand_sum
%default Industry_Brand_TMP $file_path/report/historical/age/$year/industry_brand_tmp
%default ALL_Path $file_path/report/historical/age/$year/all
%default ALL_SUM $file_path/report/historical/age/$year/all_sum
%default ALL_TMP $file_path/report/historical/age/$year/all_tmp
%default output_path /user/xxx/tmp/result
origin_cleaned_data = LOAD '$Cleaned_Log' USING PigStorage(',') --读取日志文件
AS (ad_network_id:chararray,
    xxx_ad_id:chararray,
    guid:chararray,
    id:chararray,
    create_time:chararray,
    action_time:chararray,
    log_type:chararray, 
    ad_id:chararray,
    positioning_method:chararray,
    location_accuracy:chararray,
    lat:chararray, 
    lon:chararray,
    cell_id:chararray,
    lac:chararray,
    mcc:chararray,
    mnc:chararray,
    ip:chararray,
    connection_type:chararray,
    android_id:chararray,
    android_advertising_id:chararray,
    openudid:chararray,
    mac_address:chararray,
    uid:chararray,
    density:chararray,
    screen_height:chararray,
    screen_width:chararray,
    user_agent:chararray,
    app_id:chararray,
    app_category_id:chararray,
    device_model_id:chararray,
    carrier_id:chararray,
    os_id:chararray,
    device_type:chararray,
    os_version:chararray,
    country_region_id:chararray,
    province_region_id:chararray,
    city_region_id:chararray,
    ip_lat:chararray,
    ip_lon:chararray,
    quadkey:chararray);
--loading metadata/ad(adId,campaignId) 
metadata_ad = LOAD '$AD_Data' USING PigStorage(',') AS (adId:chararray, campaignId:chararray);
--loading metadata/campaignæ•°æ®(campaignId, industryId, brandId)
metadata_campaign = LOAD '$Campaign_Data' USING PigStorage(',') AS (campaignId:chararray, industryId:chararray, brandId:chararray);
--ad and campaign for inner join
joinAdCampaignByCampaignId = JOIN metadata_ad BY campaignId,metadata_campaign BY campaignId;--(adId,campaignId,campaignId,industryId,brandId)
--filtering out redundant column of joinAdCampaignByCampaignId
joined_ad_campaign_data = FOREACH joinAdCampaignByCampaignId GENERATE $0 AS adId,$3 AS industryId,$4 AS brandId; --(adId,industryId,brandId)
--extract column for analyzing
origin_historical_age = FOREACH origin_cleaned_data GENERATE xxx_ad_id,guid,log_type;--(xxx_ad_id,guid,log_type)
--distinct
distinct_origin_historical_age = DISTINCT origin_historical_age;--(xxx_ad_id,guid,log_type)
--loading metadata_region(guid_social, sex, age, income, edu, hobby)
metadata_social = LOAD '$Social_Data' USING PigStorage(',') AS (guid_social:chararray, sex:chararray, age:chararray, income:chararray, edu:chararray, hobby:chararray);
--extract needed column in metadata_social
social_age = FOREACH metadata_social GENERATE guid_social,age;
--join socialData(metadata_social) and logData(distinct_origin_historical_age):
joinedByGUID = JOIN social_age BY guid_social, distinct_origin_historical_age BY guid;
--(guid_social, age; xxx_ad_id,guid,log_type)
--generating analyzing age data
joined_orgin_age_data = FOREACH joinedByGUID GENERATE xxx_ad_id,guid,log_type,age;
joinedByAdId = JOIN joined_ad_campaign_data BY adId, joined_orgin_age_data BY xxx_ad_id; --(adId,industryId,brandId,xxx_ad_id,guid,log_type,age)
--filtering
all_current_data = FOREACH joinedByAdId GENERATE guid,log_type,industryId,brandId,age; --(guid,log_type,industryId,brandId,age)
--for industry analyzing
industry_current_data = FOREACH all_current_data GENERATE industryId,guid,age,log_type;  --(industryId,guid,age,log_type)
--load all in the path "industry"
industry_existed_Data = LOAD '$Industry_Path' USING PigStorage(',') AS (industryId:chararray,guid:chararray,age:chararray,log_type:chararray);
--merge with history data 
union_Industry = UNION industry_existed_Data, industry_current_data;
distict_union_industry = DISTINCT union_Industry;
group_industry = GROUP distict_union_industry BY ($2,$0,$3);
count_guid_for_industry = FOREACH group_industry GENERATE FLATTEN(group),COUNT($1.$1);
rm $Industry_SUM;
STORE count_guid_for_industry INTO '$Industry_SUM' USING PigStorage(',');
--storing union industry data(current and history)
STORE distict_union_industry INTO '$Industry_TMP' USING PigStorage(',');
rm $Industry_Path
mv $Industry_TMP $Industry_Path
--counting guid for industry and brand 
industry_brand_current = FOREACH all_current_data GENERATE age,industryId,brandId,log_type,guid;
--(age,industryId,brandId,log_type,guid)
--load history data of industry_brand
industry_brand_history = LOAD '$Industry_Brand_Path' USING PigStorage(',') AS(age:chararray, industryId:chararray, brandId:chararray, log_type:chararray, guid:chararray);
--union all data of industry_brand
union_industry_brand = UNION industry_brand_current,industry_brand_history;
unique_industry_brand = DISTINCT union_industry_brand;
--(age,industryId,brandId,log_type,guid)
--counting users' number for industry and brand
group_industry_brand = GROUP unique_industry_brand BY ($0,$1,$2,$3);
count_guid_for_industry_brand = FOREACH group_industry_brand GENERATE FLATTEN(group),COUNT($1.$4);
rm $Industry_Brand_SUM;
STORE count_guid_for_industry_brand INTO '$Industry_Brand_SUM' USING PigStorage(',');
STORE unique_industry_brand INTO '$Industry_Brand_TMP' USING PigStorage(',');
rm $Industry_Brand_Path;
mv $Industry_Brand_TMP $Industry_Brand_Path
--counting user number for age and logtype
current_data = FOREACH all_current_data GENERATE age,log_type,guid;--(age,log_type,guid)
--load history data of age and logtype
history_data = LOAD '$ALL_Path' USING PigStorage(',') AS(age:chararray,log_type:chararray,guid:chararray);
--union current and history data
union_all_data = UNION history_data, current_data;
unique_all_data = DISTINCT union_all_data;
--count users' number
group_all_data = GROUP unique_all_data BY ($0,$1);
count_guid_for_age_logtype = FOREACH group_all_data GENERATE FLATTEN(group),COUNT($1.$2);
rm $ALL_SUM;
STORE count_guid_for_age_logtype INTO '$ALL_SUM' USING PigStorage(',');
STORE unique_all_data INTO '$ALL_TMP' USING PigStorage(',');
rm $ALL_Path
mv $ALL_TMP $ALL_Path

转载于:https://www.cnblogs.com/cl1024cl/p/6205417.html

你可能感兴趣的文章
Spring面试题
查看>>
窥视SP2010--第一章节--SP2010开发者路线图
查看>>
MVC,MVP 和 MVVM 的图示,区别
查看>>
C语言栈的实现
查看>>
代码为什么需要重构
查看>>
TC SRM 593 DIV1 250
查看>>
SRM 628 DIV2
查看>>
2018-2019-2 20165314『网络对抗技术』Exp5:MSF基础应用
查看>>
Python-S9-Day127-Scrapy爬虫框架2
查看>>
SecureCRT的使用方法和技巧(详细使用教程)
查看>>
右侧导航栏(动态添加数据到list)
查看>>
81、iOS本地推送与远程推送详解
查看>>
虚拟DOM
查看>>
自建数据源(RSO2)、及数据源增强
查看>>
BootStrap2学习日记2--将固定布局换成响应式布局
查看>>
关于View控件中的Context选择
查看>>
2018icpc徐州OnlineA Hard to prepare
查看>>
Spark的启动进程详解
查看>>
使用命令创建数据库和表
查看>>
数据库的高级查询
查看>>